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The first of three integral forms of the quantum mechanical variational principle is described and 
a method introduced for the simultaneous optimisation of the whole of a molecular energy curve, 
or surface, generated for some adiabatic change. Dimensionless parameters in the wavefunction are 
expressed as functions of the coordinates and the integral of the energy over the whole surface is mini- 
mised with respect to variations in these functions. An integral form of the Virial Theorem is proposed 
as a test that the wavefunctiou is in scale for the whole range. A preliminary application is made to the 
H +, H 2 and He z systems. 

Die erste yon drei integralen Formen des quantenmechanischen Variationsprinzips wird be- 
schrieben, wobei eine Methode mit adiabatischen )knderungen zur gleichzeitigen Optimierung der 
gesamten molekularen Energiekurve (-flgche) eingefiihrt wird. Dimensionslose Parameter in der Wellen- 
gleichung werden als Funktionen der Koordinaten ausgedrtickt und das Energieintegral fiber die 
gesamte Fl~iche wird durch Variation dieser Funktionen minimisiert. Zur (Jberprfifung einer der- 
artigen Wellenfunktion wird eine integrale Form des Virial-Theorems benutzt. Die Methode wird an 
den Systemen H~, I212 und H% getestet. 

Description de la premi6re de trois formes int6grales du principe variationnel de la m6canique 
quantique et introduction d'une mdthode pour l'optimisation simultan6e de toute une courbe (ou 
surface) d'6nergie mol6culaire engendr6e par une variation adiabatique. Les param6tres sans dimension 
darts la fonction d'onde sont exprim6s en fonction des coordonn6es et l'int6grale de l'6nergie sur toute 
la surface est minimis6e par rapport aux variations de ces fonctions. Une forme int6grale du th6or~me 
du viriel est propos6e comme test du bon ordre de grandeur de la fonction d'onde dans tout le domaine. 
Une application pr61iminaire est r6alis6e sur les syst6mes H +, H 2 et H%. 

Introduction 

This  p a p e r  is c o n c e r n e d  wi th  the  c a l c u l a t i o n  o f  the  w a v e f u n c t i o n  for a m o l e -  

cu la r  sys tem u n d e r g o i n g  s o m e  a d i a b a t i c  change .  T h e  H a m i l t o n i a n  for  the  sys t em 

H(X) is de f ined  by  a set  o f  c o o r d i n a t e s ,  co l l ec t ive ly  d e n o t e d  X ,  w h i c h  cha rac t e r i s e  

the  change ,  F o r  e x a m p l e  in the  c a l c u l a t i o n  of  the  p o t e n t i a l  c u r v e  for  a d i a t o m i c  
m o l e c u l e  X m i g h t  be  t he  i n t e r n u c l e a r  d i s tance ,  o r  for  a c a l c u l a t i o n  o f  a t o m i c  

po l a r i s ab i l i t y  it  w o u l d  be  the  field s t rength .  

A n  a p p r o x i m a t i o n  ~ ( X ,  ~1, ~2 . . . .  , ~n) to  the  m a n y  e l ec t ron  w a v e f u n c t i o n  of  a 
m o l e c u l e  can  be  wr i t t en  d o w n  as a f u n c t i o n  o f  the  v a r y i n g  c o o r d i n a t e s  X a n d  an  

a r b i t r a r y  n u m b e r  o f  d i m e n s i o n l e s s  p a r a m e t e r s  ~i, us ing  the  wel l  e s t ab l i shed  

t e c h n i q u e s  o f  q u a n t u m  m e c h a n i c s .  G i v e n  the  f u n c t i o n a l  f o r m  q~ the  o p t i m a l  g r o u n d  
s ta te  w a v e f u n c t i o n  for  f ixed c o o r d i n a t e s  X is t h a t  for  w h i c h  the  e x p e c t a t i o n  va lue  

of  the  e n e r g y  is m i n i m a l  w i th  r e spec t  to  the  v a r i a t i o n s  in the  p a r a m e t e r s  ~i. 
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For some infinitesimal adiabatic change in the coordinates X the functional 
form 7 ~ for the wavefunction in any particular approximation may be regarded 
as remaining the same, while the values of the parameters~ (defined as optimal), 
change infinitesimally. 

Over any finite range of coordinates X1 to X2 the set of parameters ~ thus 
define a set of functions fli(X). These are continuous functions. They will be termed 
here "Range Relaxation Functions", and specify the way in which the wave- 
function changes with the changing coordinates. The wave function for the 
whole range of coordinates may be written in terms of these relaxation functions: 

~(X) = ~P(fl,(X), fl:(X) . . . . .  ft,(X)). (1) 

The approach developed here depends on the following theorem which holds 
for the lowest state of any given symmetry: 

The optimal wavefunction of a specific functional form ~ for a system under- 
going an adiabatic change over a fixed range of coordinates X~ to X2 is that for 
which the integral: 

X2 
S Q(E(X)) F(X) dX (2) 

X~ 

is stationary and minimised with respect to variation in the form of the Range 
relaxation functions fl~(X) relating the adjustable parameters in the wavefunction 
to the coordinates. Here E(X) is the energy of the system for a coordinate value X: 

I ~(MX)) H(X) ~'(fl,(X)) d~ E(X) = 
I 

and Q(E(X)), F(X) are arbitrary, finite, single-valued functions subject to the con- 
straints: 

Sign(Q(E)) = Sign(E)) 

dQ/dE>O ~X2>=X>=X ~ . 
F(X) > 0 ) 

The optimal relaxation functions fli(X) are independent of the functions Q and F. 
The value of the integral [Eq. (2)] can never fall below that for the true wavefunc- 
tion with given functions Q and F. 

The truth of the theorem can be ascertained from the following arguments, 
or proved formally using the calculus of variations [12]. Suppose fl(X) is defined 
at each individual point X k within the range over which the integral is defined such 
that E(Xk) is a minimum. Then it is clear that S E(X)dX is also a minimum. 
Conversly the minimum of this integral defines a function fl(X) such that 
dE(Xk)/dfl(Xk) = 0 at each point. The two auxilliary conditions on Q(E) require 
that this function decreases as E decreases; and thus at each point both functions 
have a minimum for the same value of fl(Xk). The same function fl(X) is defined 
by the minima of both the integrals S Q(E(X)) dX and S E(X) dX. At each point 
F(Xk) is a positive number and thus the minimum of E(Xk) F(Xk) is fixed by the 
same value of fl(Xk) as is the minimum of E(Xk). This establishes that there is a 
function fl(X) which minimises the integral Eq. (2), and that it is independent of 
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the functions Q and F, given that the auxilliary conditions hold. Furthermore 
f l(X) defines the value of the parameter in the wavefunction for which the energy 
is optimised at each point. 

The theorem can readily be generalised to cover a system with n independent 
coordinates X ~k). 

For  the rest of this paper the only cases considered are those for which Q(E) = E. 
Applications using the full integral are currently under study. 

The proof of this theorem in terms of the variational theorem is trivial though 
its consequences do not seem to have been followed up. Thus within the computa- 
tional framework of any theory of electronic structure (for example the valence 
bond theory), we assume a form for the functions fli depending on one or more 
adjustable constants. Minimising the integral of the energy over the coordinate 
range allows one to survey and optimise the whole of an energy curve or surface 
at a single calculation. 

The success of the treatment in predicting experimental results depends on 
the complexity and flexibility of the functions ~P and fli and in practice will re- 
present a balance between the labour expended and the accuracy desired. The 
choice of satisfactory forms for the range relaxation functions is simplified by 
the knowledge that not  only they are often monotonic but that they may also 
have well defined limits. For  the potential curve ofa  diatomic molecule for example 
these could be the united and separated atoms. 

The Range relaxation function approach can also be used in making perturba- 
tion theory calculations; for example where there is a zero order problem for 
which the relaxation functions are known. 

In this paper an attempt is made to set up the first part of a practical and 
completely non-empirical computational scheme for this variational approach, 
and to apply it to the potential curves for the ground states of the H~-, H2 molecules 
and to the interaction of two ground state helium atoms over a range of inter- 
nuclear distances 1 to 3 atomic units. The next two papers introduce two further 
theorems governing variationally optimised "relaxation" functions, and prepare 
the way for the first serious applications. The simple calculations which follow 
here have been made to gain experience with the numerical techniques. We confine 
consideration for the moment  to the use of a constant damping function F(X)  = 1. 

Evaluation of the Energy Integral 

For  the potential curve of a diatomic molecule the coordinate varying in the 
Hamiltonian is the internuclear distance R. The wavefunctions in the following 
preliminary calculations are of a simple LCAO molecular orbital form, and the 
adjustable parameters al are the orbital exponents. We are faced with the choice 
of the functional form ei(R). Clearly the choice becomes less critical the smaller 
the range to be considered becomes. If no more than the gradient of the surface 
at some point is desired a linear approximation would suffice. By a more careful 
choice of the functional form we can make economical use of a small number of 
adjustable parameters and of the atomic limits to represent the wavefunction 
over as wide as possible a working range of coordinates. The problem loosely 
stated is a familiar one in numerical analysis: choose a function which varies in 
10" 
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the same way as the one under investigation and incorporate adjustable para- 
meters to take up the difference. Musulin [1] originally suggested a relationship 
empirically correlating the screening constant with the internuclear distance 
of the form: 

c~(R) = c~(s) + A ~ e x p ( - c R )  
c~ = ~ ( u ) -  c~(s) (3) 

where c is a positive constant, c~(R) the orbital exponent at internuclear distance 
R, co(s) is the separated atom orbital exponent and c~(u) that for the united atom 
to which the molecule reduces at R = 0. Calculations have been made using this 
expression since it is so simple and passes to the correct limits. There is no clear 
means of roughly predicting c a priori. Comparative calculations have also been 
made using the function: 

(R) = a(s) + A c~ 0 (a (s), r > cR).  (4) 

Here r is the distance of a point in space from the nucleus and Q the integral of the 
electron density over all space outside a distance cR for the orbital concerned. 
This expression was introduced previously by the author. Without any adjustable 
constant a similar function has been found to give realistic values of the quadratic, 
cubic, and quartic force constants for a wide variety of diatomic molecules. 
These molecular parameters depend critically on the scale of the wavefunction 
and its derivatives at the equilibrium internuclear distance. The derivation of Eq. (4) 
and its extension to heteronuclear systems, which are largely intuitive, have 
been given before [2, 3]. 

Provided the approximate c~(R), [Eqs. (3) or (4)], is a reasonably good re- 
presentation of the optimal relaxation function [an exact solution for the minimum 
of the integral Eq. (2)], we may expect the energy curve to be close to the limit 
for one optimised at each point. Such a curve is therefore free from a serious 
defect inherent in a great many calculated energy curves arising from the use of 
a fixed basis set which is more appropriate to one atomic configuration than to the 
rest. The basis lbr example is often specifically optimised at R = oo. We require a 
criterion to establish that this is true for the range chosen in any particular calcula- 
tion. The virial theorem 1-4] provides this. 

For  the optimal relaxation function and, provided the basis is fully adjustable 
for this function alone, the molecular wavefunction obeys the virial theorem at 
each point in the range: 

E + T + R(dE/dR) = 0. (5) 

Here E is the total and T the electronic kinetic energy. Eq. (5) leads directly to 
an integral form: 

R2 
T(R) dR/(R 1E(R1) - Re E(R2)) = 1. (6) 

R1 

This ratio has also been calculated and tabulated with each calculation. Any 
significant departure from the equality of Eq. (6) would imply that the relaxation 
function was not sufficiently flexible to provide an equally well balanced basis 
set over the whole of the range used. The energy curve could then be expected to 
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be biassed. The energy is stationary with respect to variations in the optimal relaxa- 
tion function, and thus a small departure from equality implies no more than a 
second order inaccuracy in the energy. It should none the less be pointed out 
that the validity of Eq. (6) for a particular calculation is a necessary, but not a 
sufficient condition for a successful relaxation function. 

The wavefunctions used in these preliminary calculations are quite unsophisti- 
cated, though care has been taken to use for them functions which pass to the 
correct limits as R--* ~ and R ~ 0 .  For  H~ the simplest LCAO function has been 
used. For  H 2 the Weinbaum function which allows interaction between the 

1 + two lowest LCAO configurations of Z 0 symmetry is used. For  He 2 the LCAO 
function of Huzinaga [-6] in which the exponents for bonding and antibonding 
orbitals are allowed to vary separately was considered adequate. 

The range integration step has been performed numerically by Gauss Legendre 
quadrature. As is well known this is a method of the "highest precision" [7], and 
with n quadrature points provides exact integration for any function: 

a + b R  + c R a  + d R  3 + . . .pR 2n-1 

In order therefore to make the method as accurate as possible with the smallest 
number of points we must make sure that the function whose integral we are 
minimising has negligable values for the higher order coefficients. For  the potential 
curves studied here the nuclear potential has been separated from the integration 
since it is not particularly suitable for this form of quadrature. In so far as the 
variation of the electronic w avefunction with change in R can be regarded as the 
result of a non-uniform linear a scaling operation [2] the principle terms in the 
energy are covered by an" expansion of up to second order. This implies that a 
ludicrously bare 2-point quadrature could supply a meaningful first approxima- 
tion. The results at various quadratures indeed bear this out. In other cases the 
best choice of damping function F(X) may perhaps be the one which allows high 
precision with a small number of quadrature points. 

The numerical integration detracts somewhat from the elegance of the tech- 
nique, though it should be pointed out that the conceptual framework for an 
integration and a quadrature of the highest precision allows the number of points 
to be kept to the very minimum, and ensures at the same time a balanced basis 
without the tedious necessity for re-minimisation of the orbital exponents at 
every point. As will be shown in a later paper this does permit relatively rapid 
calculations of 2 dimensional energy surfaces which would be otherwise in- 
accessible. 

There is a further aspect for which the present extended energy method might 
be of considerable value in very refined calculations, though it is not followed 
up further here. Consider the case when the functional form of the wavefunction 
for a particular value of R depends on a large number of adjustable parameters. 
Suppose there are several of these which do not affect the energy much and which 
do not appear to be very likely to alter much with R. It would seem desirable to 
replace these by constants. If the straightforward procedure of replacing them 
by the values for one particular value of R were followed this would introduce a 
very unfortunate bias. If for example the value at the minimum energy were used 
this would depress the energy at that point more than the others and tend to 
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increase a predicted force constant. On the other hand the present technique would 
give an optimum for a parameter related to the whole range, without particular bias. 
This method of fixing the less sensitive parameters by unbiassed constant values 
might replace a number of otherwise troublesome ad hoc estimates. 

One final technical point. The 40K machine on which the calculations were 
performed (Titan) is not equipped with an overlay facility. In order to save core 
space, and to make rapid and at the same time exact calculation of the many- 
centre electron repulsion integrals which appear in the energy expression contracted 

Table 1. S-orbital expansions in Caussian basis a 

No of terms 1 2 3 4 

in expansion a Coeff. ~ Coeff. ~ Coeff. ~ Coeff. 

0.28294 1.0 0.201527 0.82123 0.151374 0.64767 0.123317 0.50907 
1.33248 0.27441 0.681277 0.40789 0.453757 0.47449 

4.50038 0.07048 2.01330 0.13424 
13.3615 0.01906 

Energy 
of H atom - 0.424413 - 0.485813 - 0.496979 - 0.499277 

a Taken from Ref. [9]. 

[8] 1S-type gaussian expansions [-9] of various lengths have been used as a basis 
more or less closely approximating a Slater basis of orbital exponent 1. The group 
can be scaled as a whole to make an orbital equivalent to a Slater orbital of ar- 
bitrary exponent. The group "orbital exponent" is thus a single number. Although 
the smaller expansions do not well approximate the Slater S-orbital cusps at the 
nuclei the shape of the energy surfaces seem to be very little affected by the de- 
ficiency in the region of interest. 

The unscaled expansions used to approximate the 1S orbital of hydrogen [-9] 
are shown in Table 1, together with the expectation value of the energy for the atom. 

Simple Calculations on H +, H~ and He~ 

In order to gain experience with the numerical techniques a wide variety of 
calculations were made on the hydrogen molecule ion. Table 2 shows the results 
of treatments using 2, 4, 6, 8, and 10 Gauss Legendre quadrature points, with 
gaussian expansions of 1, 2, 3, and 4 terms for the ls orbital. In each calculation the 
adjustable parameters in the wavefunction were the orbital exponents. Eqs. (3) 
and (4) were used to give the functional forms for the variation of orbital exponent 
with change in internuclear distance. The detailed form of this variation was 
calculated by adjusting the parameter c in either of these equations to optimise 
the energy integral, Eq. (2). The calculated results are practically the same for all 
quadratures and basis expansions down to the lowest of 2 points and a single 
gaussian. The differences between the energy integrals for the four alternative 
gaussian expansions is largely accounted for by the differences in the energy of the 
hydrogen atom and proton at infinity. Even where the fullest basis is required 
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for the final energy curve much of the labour involved in extensive minimisation 
could have been avoided using a small quadrature and expansion in a prior 
calculation 1. 

Tables 3 and 4 show the results of further calculations with a variety of quadra- 
tures and bases for H 2 and He z. The encouraging conformity among the results 
for each molecule is preserved here also. 

Between the two alternative forms for the Range relaxation function there 
seems to be little to choose as far as the energy integral is concerned. Eq. (4) is 

Table 2. H~. Calculations of  the electronic energy integral for the L C A O - M O  function, range relaxation parameter and 
integral virial ratio using Gauss Legendre quadratures of  2, 4, 6, 8 and 10 points, with gaussian orbital expansions of  
1, 2, 3, and 4 terms. The relaxation functions are given by Eqs. (3) and (4). a(s) = 1. ct(u) = 2. The range of  integration 

is I to 3 a.u. 

Quadrature  
points 

Relaxation function Eq. (3) 

Number  of terms 
in gaussian expansion of orbital 

Relaxation function Eq. (4) 

Number  of terms 
in gaussian expansion of orbital 

1 2 3 4 1 2 3 4 

2 

4 

6 

8 

10 

-2.10411 -2 .20832 -2 .22255 -2 .22567 -2 .10458 -2 .20526 -2 .22099 
0.698 0.726 0.710 0.679 1.058 1.082 1.071 
0.9960 0.9890 0.9983 1.0218 0.9844 0.9794 0.9886 

-2 .10437 -2 .20782 -2 .22397 -2 .22638 -2 .10460 -2 .20629 -2 .22196 
0.700 0.718 0.715 0.710 1.050 1.072 1.063 
0.9965 0.9874 1.0016 0.9995 0.9909 0.9890 0.9880 

-2 .10445 -2 .20822 -2 .22359 -2 .22624 -2 .10468 -2 .20590 -2 .22177 
0.701 0.721 0.713 0.710 1.051 1.070 1.062 
0.9964 0.9954 0.9972 0.9984 0.9910 0.9901 0.9880 

-2 .10448 -2 .20833 -2 .22356 -2 .22650 -2 .10471 -2 .20618 -2 .22209 
0.701 0.708 0.712 0.712 1.051 1.072 1.065 
0.9964 1.0063 0.9973 0.9950 0.9907 0.9890 0.9870 

-2 .10450 -2 .20806 -2 .22384 -2 .22635 -2 .10473 -2 .20605 -2 .22192 
0.701 0.720 0.714 0.710 1.051 1.071 1.062 
0.9964 0.9954 0.9966 0.9984 0.9905 0.9885 0.9883 

- 2.22409 
1.074 
0.9774 

-2 .22418 
1.060 
0.9880 

- 2.22440 
1.049 
0.9961 

- 2.22426 
1 ~060 
0.9880 

- 2.22421 
1.032 
0.9833 

perhaps to be preferred however in the extension of the method to more compli- 
cated systems, since the adjustable parameter comes out as expected, quite close to 1. 
Considering the relatively large range of 2 a.u. over which the calculations were 
performed the agreement with the integrated virial theorem, Eq. (6) is quite 
satisfactory. 

Phillipson [10] has tabulated accurately optimised parameters and energies 
for the Huzinaga wavefunction for Hez, at a variety of internuclear distances 

1 The slight scatter in the results is almost entirely accounted for in the minimising procedure which 
located the min imum to within about  0.003 units and in approximating the incomplete g a m m a  func- 

1 

tion by the limiting expression S e x p ( -  tu:) du = V~/2t~ for values of t > 3.5. In later calculations on 
0 

H 2 and He2 the range for which the series expansion was used was extended to t = 5 and the accuracy 
of the minimisation procedure reduced to about  0.05. 
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Table 3. Range relaxation treatments of H~. Weinbaum function, ~(s) = 1. c~(u) = 1.6875 electronic energy 
integral, relaxation parameter and virial ratio in order for each calculation. Range of integration 1 to 3 a.u. 

Quadrature points Terms Relaxation function Relaxation function 
Eq.  (3) Eq.  (4) 

2 1 - 3 .01935 - 3 .02099 
0 .980 1.327 
1.0127 1.0033 

2 4 - 3 .30836 - 3.30903 

0.943 1.296 

1.0060 0 .9896 

4 2 - 3 .25510 - 3.25588 
0 .977 1.326 
1.0082 0 .9949 

10 1 - 3 .01905 - 3 .02082 

0 .988 1.338 
1.0113 1.0019 

10 4 - 3 .30957 - 3 .30970 

0.933 1.299 
1.0117 0 .9919 

between 0.5 and 2 A. The repulsive potential is compared in Table 5 with the 
results of a range relaxation treatment over the same range. The basis is Huzinaga's 
4-term gaussian orbital expansion, and is therefore close to, though not the same 
as that used by Phillipson (the energy of the hydrogen atom being 0.0007 a.u., 
inferior). The two point quadrature used on the other hand represents the crudest 
level of range integral optimisation possible. Furthermore the range of the calcula- 
tion is extremely large, about 3 a.u. These might therefore be expected to represent 
the worst conditions under which the treatment might be applied. The results shown 
in Table 5, using Eq. (4) for the relaxation function are really quite close to those 
of the accurately optimised function, except at very short distances; and represent 
a substantial reduction in labour. That the basis is not well in scale, and that the 
range is indeed excessive is shown by the poor value of the virial ratio: 1.2310. 
The potential is within 1 kcal of the experimental value in the region of greatest 
"chemical" interest, that is where it lies between 0 and 12 kcal. 

Table 4. Range relaxation treatments of H e  z 1 X g + .  c~(s)= 1.6875, c~(ux)=3.6848, e ( u 2 ) = 0 . 4 7 8 " .  
Electronic energy integral, relaxation parameter and ratio. Range of integration I to 3 a.u. 

Quadrature points Terms Relaxation function Relaxation function 
Eq.  (3) Eq.  (4) 

4 2 --  14.86569 - 14.87475 
1.631 1.215 1.136 0.889 
0 .9965 0 .9897 

The united atom orbital exponent 0.9560 given by Clementi et al., Ref. [11]  was approximately 
corrected for the change in principle quantum number by division by 2. The results are quite insensitive 
to the precise value chosen. Phillipson, Ref. [10]  q u o t e s  a va lue  o f  0.36. 
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Table 5. Comparison of the repulsive potential for He 2 calculated from the Phillipson-Huzinaga function 
and from the related range relaxation treatment. The long range ( ~ 3 a.u.) and bare quadrature (2 points) 
exemplify the least favorable conditions under which the treatment might be applied. The 4-term gaussian 
expansion was used for the basis set, the optimal relaxation parameters are 1.043 and 0.833, and the integral 

virial ratio is 1.2310 showing that the treatment is over a too extended range 

R (a.u.) Orbital exponents Repulsive potential 

~0 an 
R.R. Phillipson R.R. Phillipson R.R. Phillipson 

0.945180 2.39 2.23 1.08 0.99 1.09488 1.05176 
1.181474 2.12 2.04 1.26 1.22 0.67286 0.66279 
1.417769 1.94 1.92 1.40 1.38 0.41616 0.43379 
1.654064 1.83 1.84 1.50 1.49 0.25401 0.25507 
1.890360 1.76 1.79 1.57 1.57 0.15386 0.15549 
2.126654 1.73 1.75 1.61 1.62 0.09351 0.09379 
2.362949 1.71 1.73 1.64 1.65 0.05558 0.05589 
2.599244 1.70 1.71 1.66 1.67 0.03217 0.03289 
2.835538 1.69 1.70 1.67 1.68 0.01772 0.01908 
3.071834 1.69 1.69 1.68 1.69 0~01019 0.01089 
3.308129 1.689 1.687 1.682 1.693 0.00583 0.00610 
3.544423 1.688 1.684 1.684 1.695 0.00310 0.00334 
3.780718 1.688 1.683 1.686 1.695 0.00173 0.00180 
ov 1.6875 ~ 1.6875 1.6875 a 1.6875 0.0 0.0 

a The optimum for the gaussian function is actually about 0.0008 less though the Slater orbital 
exponent was used for self-consistency. 

Conclusions 

W h i l e  i t  is c l ea r ly  t o o  ea r ly  to  m a k e  a n y  d e t a i l e d  c o n c l u s i o n s  a b o u t  t h i s  

m e t h o d  o f  c a l c u l a t i o n  t h e  r e s u l t s  so  fa r  o b t a i n e d  a r e  m o s t  e n c o u r a g i n g ,  s ince  t h e y  

i n d i c a t e  t h a t  e v e n  w i t h  t h e  c r u d e s t  b a s e s  a n d  q u a d r a t u r e s  m e a n i n g f u l  e n e r g y  

c u r v e s  c a n  b e  o b t a i n e d ,  a t  a c o m p l e t e l y  n o n - e m p i r i c a l  level .  T h e  s i gn i f i c ance  o f  

t h e s e  c r u d e  r e s u l t s  is c l e a r l y  o f  t h e  g r e a t e s t  i m p o r t a n c e  in  e x t e n d i n g  t h e  m e t h o d  

to  m a n y - d i m e n s i o n a l ,  p o l y - e l e c t r o n i c  sy s t ems .  
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